Remorin interacting with PCaP1 impairs Turnip mosaic virus intercellular movement but is antagonised by VPg
© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 225(2020), 5 vom: 01. März, Seite 2122-2139 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Potyvirus Remorin VPg actin filaments cell-to-cell movement Plant Proteins Viral Proteins remorin |
Zusammenfassung: | © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. Group 1 Remorins (REMs) are extensively involved in virus trafficking through plasmodesmata (PD). However, their roles in Potyvirus cell-to-cell movement are not known. The plasma membrane (PM)-associated Ca2+ binding protein 1 (PCaP1) interacts with the P3N-PIPO of Turnip mosaic virus (TuMV) and is required for TuMV cell-to-cell movement, but the underlying mechanism remains elusive. The mutant plants with overexpression or knockout of REM1.2 were used to investigate its role in TuMV cell-to-cell movement. Arabidopsis thaliana complementary mutants of pcap1 were used to investigate the role of PCaP1 in TuMV cell-to-cell movement. Yeast-two-hybrid, bimolecular fluorescence complementation, co-immunoprecipitation and RT-qPCR assays were employed to investigate the underlying molecular mechanism. The results show that TuMV-P3N-PIPO recruits PCaP1 to PD and the actin filament-severing activity of PCaP1 is required for TuMV intercellular movement. REM1.2 negatively regulates the cell-to-cell movement of TuMV via competition with PCaP1 for binding actin filaments. As a counteractive response, TuMV mediates REM1.2 degradation via both 26S ubiquitin-proteasome and autophagy pathways through the interaction of VPg with REM1.2 to establish systemic infection in Arabidopsis. This work unveils the actin cytoskeleton and PM nanodomain-associated molecular events underlying the cell-to-cell movement of potyviruses |
---|---|
Beschreibung: | Date Completed 14.05.2021 Date Revised 31.05.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.16285 |