Transcription factor CaNAC1 regulates low-temperature-induced phospholipid degradation in green bell pepper
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 71(2020), 3 vom: 23. Jan., Seite 1078-1091 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Capsicum annuum Bell peppers NAC chilling injury cold stress membrane lipid degradation transcriptional regulation Phospholipids mehr... |
Zusammenfassung: | © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Phospholipids constitute the main component of biomembranes. During low-temperature storage and transportation of harvested bell peppers (Capsicum annuum), chilling injury participates in their decay. A primary cause of this chilling injury is phospholipid degradation. In this study, three genes encoding phospholipase D (PLD) were identified from bell peppers and their activities were examined under cold stress. Low temperature (4 °C) induced strong accumulation of the CaPLDα4 transcript, suggesting that it is associated with the phenomenon of phospholipid degradation and destruction of cell membranes. Low temperature also significantly induced increased amounts of NAM-ATAF1/2-CUC2 (NAC) domain transcription factors. CaNAC1 was found to interact with the promoter of CaPLD4 in a yeast one-hybrid screen. Electrophoretic mobility shift and ß-glucuronidase reporter assays demonstrated that CaNAC1 binds to the CTGCAG motif in the CaPLDα4 promoter, thereby activating its transcription and controlling phospholipid degradation. The ubiquitination sites of the CaNAC1 protein were characterized by liquid chromatography-tandem mass spectrometry. We conclude that CaNAC1 is a transcriptional activator of CaPLDα4 and suggested that it participates in the degradation of membrane lipids in bell peppers when they are stored at low temperature |
---|---|
Beschreibung: | Date Completed 06.04.2021 Date Revised 06.04.2021 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erz463 |