Visual Analytics of a Computer-Aided Diagnosis System for Pancreatic Lesions

Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 3 vom: 11. März, Seite 2174-2185
1. Verfasser: Dmitriev, Konstantin (VerfasserIn)
Weitere Verfasser: Marino, Joseph, Baker, Kevin, Kaufman, Arie E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM302202951
003 DE-627
005 20231225110226.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2947037  |2 doi 
028 5 2 |a pubmed24n1007.xml 
035 |a (DE-627)NLM302202951 
035 |a (NLM)31613771 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dmitriev, Konstantin  |e verfasserin  |4 aut 
245 1 0 |a Visual Analytics of a Computer-Aided Diagnosis System for Pancreatic Lesions 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.12.2021 
500 |a Date Revised 31.12.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal decision process, impossibility to gain insights, and ultimately to skepticism from clinicians. We present a visual analytics approach to uncover the decision-making process of a CAD system for classifying pancreatic cystic lesions. This CAD algorithm consists of two distinct components: random forest (RF), which classifies a set of predefined features, including demographic features, and a convolutional neural network (CNN), which analyzes radiological (imaging) features of the lesions. We study the class probabilities generated by the RF and the semantical meaning of the features learned by the CNN. We also use an eye tracker to better understand which radiological features are particularly useful for a radiologist to make a diagnosis and to quantitatively compare with the features that lead the CNN to its final classification decision. Additionally, we evaluate the effects and benefits of supplying the CAD system with a case-based visual aid in a second-reader setting 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Marino, Joseph  |e verfasserin  |4 aut 
700 1 |a Baker, Kevin  |e verfasserin  |4 aut 
700 1 |a Kaufman, Arie E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 3 vom: 11. März, Seite 2174-2185  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:3  |g day:11  |g month:03  |g pages:2174-2185 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2947037  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 3  |b 11  |c 03  |h 2174-2185