Visual Analytics of a Computer-Aided Diagnosis System for Pancreatic Lesions

Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 3 vom: 11. März, Seite 2174-2185
1. Verfasser: Dmitriev, Konstantin (VerfasserIn)
Weitere Verfasser: Marino, Joseph, Baker, Kevin, Kaufman, Arie E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Machine learning is a powerful and effective tool for medical image analysis to perform computer-aided diagnosis (CAD). Having great potential in improving the accuracy of a diagnosis, CAD systems are often analyzed in terms of the final accuracy, leading to a limited understanding of the internal decision process, impossibility to gain insights, and ultimately to skepticism from clinicians. We present a visual analytics approach to uncover the decision-making process of a CAD system for classifying pancreatic cystic lesions. This CAD algorithm consists of two distinct components: random forest (RF), which classifies a set of predefined features, including demographic features, and a convolutional neural network (CNN), which analyzes radiological (imaging) features of the lesions. We study the class probabilities generated by the RF and the semantical meaning of the features learned by the CNN. We also use an eye tracker to better understand which radiological features are particularly useful for a radiologist to make a diagnosis and to quantitatively compare with the features that lead the CNN to its final classification decision. Additionally, we evaluate the effects and benefits of supplying the CAD system with a case-based visual aid in a second-reader setting
Beschreibung:Date Completed 31.12.2021
Date Revised 31.12.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2019.2947037