Half-Space Power Diagrams and Discrete Surface Offsets

We present an efficient, trivially parallelizable algorithm to compute offset surfaces of shapes discretized using a dexel data structure. Our algorithm is based on a two-stage sweeping procedure that is simple to implement and efficient, entirely avoiding volumetric distance field computations typi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - (2019) vom: 11. Okt.
1. Verfasser: Chen, Zhen (VerfasserIn)
Weitere Verfasser: Panozzo, Daniele, Dumas, Jeremie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present an efficient, trivially parallelizable algorithm to compute offset surfaces of shapes discretized using a dexel data structure. Our algorithm is based on a two-stage sweeping procedure that is simple to implement and efficient, entirely avoiding volumetric distance field computations typical of existing methods. Our construction is based on properties of half-space power diagrams, where each seed is only visible by a half space, which were never used before for the computation of surface offsets. The primary application of our method is interactive modeling for digital fabrication. Our technique enables a user to interactively process high-resolution models. It is also useful in a plethora of other geometry processing tasks requiring fast, approximate offsets, such as topology optimization, collision detection, and skeleton extraction. We present experimental timings, comparisons with previous approaches, and provide a reference implementation in the supplemental material
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0506
DOI:10.1109/TVCG.2019.2945961