Deep Portrait Image Completion and Extrapolation

General image completion and extrapolation methods often fail on portrait images where parts of the human body need to be recovered -a task that requires accurate human body structure and appearance synthesis. We present a twostage deep learning framework for tackling this problem. In the first stag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 11. Okt.
1. Verfasser: Wu, Xian (VerfasserIn)
Weitere Verfasser: Li, Rui-Long, Zhang, Fang-Lue, Liu, Jian-Cheng, Wang, Jue, Shamir, Ariel, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM302202889
003 DE-627
005 20240229162349.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2945866  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM302202889 
035 |a (NLM)31613764 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Xian  |e verfasserin  |4 aut 
245 1 0 |a Deep Portrait Image Completion and Extrapolation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a General image completion and extrapolation methods often fail on portrait images where parts of the human body need to be recovered -a task that requires accurate human body structure and appearance synthesis. We present a twostage deep learning framework for tackling this problem. In the first stage, given a portrait image with an incomplete human body, we extract a complete, coherent human body structure through a human parsing network, which focuses on structure recovery inside the unknown region with the help of full-body pose estimation. In the second stage, we use an image completion network to fill the unknown region, guided by the structure map recovered in the first stage. For realistic synthesis the completion network is trained with both perceptual loss and conditional adversarial loss.We further propose a face refinement network to improve the fidelity of the synthesized face region. We evaluate our method on publicly-available portrait image datasets, and show that it outperforms other state-of-the-art general image completion methods. Our method enables new portrait image editing applications such as occlusion removal and portrait extrapolation. We further show that the proposed general learning framework can be applied to other types of images, e.g. animal images 
650 4 |a Journal Article 
700 1 |a Li, Rui-Long  |e verfasserin  |4 aut 
700 1 |a Zhang, Fang-Lue  |e verfasserin  |4 aut 
700 1 |a Liu, Jian-Cheng  |e verfasserin  |4 aut 
700 1 |a Wang, Jue  |e verfasserin  |4 aut 
700 1 |a Shamir, Ariel  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 11. Okt.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:11  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2945866  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 11  |c 10