Deep Portrait Image Completion and Extrapolation

General image completion and extrapolation methods often fail on portrait images where parts of the human body need to be recovered -a task that requires accurate human body structure and appearance synthesis. We present a twostage deep learning framework for tackling this problem. In the first stag...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 11. Okt.
1. Verfasser: Wu, Xian (VerfasserIn)
Weitere Verfasser: Li, Rui-Long, Zhang, Fang-Lue, Liu, Jian-Cheng, Wang, Jue, Shamir, Ariel, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:General image completion and extrapolation methods often fail on portrait images where parts of the human body need to be recovered -a task that requires accurate human body structure and appearance synthesis. We present a twostage deep learning framework for tackling this problem. In the first stage, given a portrait image with an incomplete human body, we extract a complete, coherent human body structure through a human parsing network, which focuses on structure recovery inside the unknown region with the help of full-body pose estimation. In the second stage, we use an image completion network to fill the unknown region, guided by the structure map recovered in the first stage. For realistic synthesis the completion network is trained with both perceptual loss and conditional adversarial loss.We further propose a face refinement network to improve the fidelity of the synthesized face region. We evaluate our method on publicly-available portrait image datasets, and show that it outperforms other state-of-the-art general image completion methods. Our method enables new portrait image editing applications such as occlusion removal and portrait extrapolation. We further show that the proposed general learning framework can be applied to other types of images, e.g. animal images
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2019.2945866