Kinetic modeling study on the combustion treatment of cathode from spent lithium-ion batteries

Thermal treatment offers an alternative method for the separation of aluminum foil and cathode materials during spent lithium-ion batteries recycling. In this work, the combustion kinetic of cathode was studied based on six model-free (isoconversional) methods, namely Flynn-Wall-Ozawa (FWO), Friedma...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 38(2020), 1 vom: 01. Jan., Seite 100-106
1. Verfasser: Yao, Zhitong (VerfasserIn)
Weitere Verfasser: Yu, Shaoqi, Su, Weiping, Wu, Daidai, Wu, Weihong, Tang, Junhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Criado method Spent lithium-ion batteries cathode material model-free method polyvinylidene fluoride Lithium 9FN79X2M3F
Beschreibung
Zusammenfassung:Thermal treatment offers an alternative method for the separation of aluminum foil and cathode materials during spent lithium-ion batteries recycling. In this work, the combustion kinetic of cathode was studied based on six model-free (isoconversional) methods, namely Flynn-Wall-Ozawa (FWO), Friedman, Kissinger-Akahira-Sunose, Starink, Tang, and Boswell methods. The possible decomposition mechanism was also probed using a master-plots method (Criado method). Thermogravimetric analysis showed that the whole thermal process could be divided into three stages with temperatures of 37-578°C, 578-849°C, and 849-1000°C. The activation energy (Eα) derived from these model-free methods displayed the same trend, gradually increasing with a conversion range of 0.002-0.013, and significantly elevating beyond this range. The coefficients from the FWO method were larger, and the resulted Eα fell into the range of 10.992-40.298 kJ/mol with an average value of 20.228 kJ/mol. Comparing the theoretical master plots with an experimental curve, the thermal decomposition of cathode could be better described by the geometric contraction models
Beschreibung:Date Completed 30.12.2019
Date Revised 30.12.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X19879224