|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM30190989X |
003 |
DE-627 |
005 |
20231225105614.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201905018
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1006.xml
|
035 |
|
|
|a (DE-627)NLM30190989X
|
035 |
|
|
|a (NLM)31583770
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Hongguang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Mimicking Sensory Adaptation with Dielectric Engineered Organic Transistors
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 26.11.2019
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Mimicking sensory adaptation with transistors is essential for developing next-generation smart circuits. A key challenge is how to obtain controllable and reversible short-term signal decay while simultaneously maintaining long-term electrical stability. By introducing a buried dynamic-trapping interface within the dielectric layer, an organic adaptive transistor (OAT) with sensory adaptation functionality is developed. The device induces self-adaptive interfacial trapping to enable volatile shielding of the gating field, thereby leading to rapid and temporary carrier concentration decay in the conductive channel without diminishing the mobility upon a fixed voltage bias. More importantly, the device exhibits a fine-tuned decay constant ranging from 50 ms to 5 s, accurately matching the adaptation timescales in bio-systems. This not only suggests promising applications of OATs in flexible artificial intelligent elements, but also provides a strategy for engineering organic devices toward novel biomimetic functions
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bioelectronic device
|
650 |
|
4 |
|a interface engineering
|
650 |
|
4 |
|a organic adaptive transistor
|
650 |
|
4 |
|a organic transistor
|
650 |
|
4 |
|a sensory adaptation
|
700 |
1 |
|
|a He, Zihan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jin, Wenlong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Lanyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Wenrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Di, Chong-An
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Daoben
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 48 vom: 20. Nov., Seite e1905018
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:48
|g day:20
|g month:11
|g pages:e1905018
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201905018
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 48
|b 20
|c 11
|h e1905018
|