Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High-Efficiency Exciplex Light-Emitting Diodes
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 46 vom: 01. Nov., Seite e1904114 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article charge-transfer states delayed fluorescence exciplexes orbital polarization spin-orbital coupling |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Experimental studies to reveal the cooperative relationship between spin, energy, and polarization through intermolecular charge-transfer dipoles to harvest nonradiative triplets into radiative singlets in exciplex light-emitting diodes are reported. Magneto-photoluminescence studies reveal that the triplet-to-singlet conversion in exciplexes involves an artificially generated spin-orbital coupling (SOC). The photoinduced electron parametric resonance measurements indicate that the intermolecular charge-transfer occurs with forming electric dipoles (D+• →A-• ), providing the ionic polarization to generate SOC in exciplexes. By having different singlet-triplet energy differences (ΔEST ) in 9,9'-diphenyl-9H,9'H-3,3'-bicarbazole (BCzPh):3',3'″,3'″″-(1,3,5-triazine-2,4,6-triyl)tris(([1,1'-biphenyl]-3-carbonitrile)) (CN-T2T) (ΔEST = 30 meV) and BCzPh:bis-4,6-(3,5-di-3-pyridylphenyl)-2-methyl-pyrimidine (B3PYMPM) (ΔEST = 130 meV) exciplexes, the SOC generated by the intermolecular charge-transfer states shows large and small values (reflected by different internal magnetic parameters: 274 vs 17 mT) with high and low external quantum efficiency maximum, EQEmax (21.05% vs 4.89%), respectively. To further explore the cooperative relationship of spin, energy, and polarization parameters, different photoluminescence wavelengths are selected to concurrently change SOC, ΔEST , and polarization while monitoring delayed fluorescence. When the electron clouds become more deformed at a longer emitting wavelength due to reduced dipole (D+• →A-• ) size, enhanced SOC, increased orbital polarization, and decreased ΔEST can simultaneously occur to cooperatively operate the triplet-to-singlet conversion |
---|---|
Beschreibung: | Date Completed 13.11.2019 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201904114 |