A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these da...

Description complète

Détails bibliographiques
Publié dans:BioTechniques. - 1991. - 67(2019), 4 vom: 01. Okt., Seite 172-176
Auteur principal: Khurshed, Mohammed (Auteur)
Autres auteurs: Molenaar, Remco J, van Noorden, Cornelis Jf
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:BioTechniques
Sujets:Journal Article Research Support, Non-U.S. Gov't cBioPortal cancer genomics data mining epigenetics gene expression in silico L-Lactate Dehydrogenase EC 1.1.1.27 plus... LDHA protein, human Isocitrate Dehydrogenase EC 1.1.1.41 IDH1 protein, human EC 1.1.1.42.
LEADER 01000caa a22002652c 4500
001 NLM301679215
003 DE-627
005 20250226013928.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.2144/btn-2018-0179  |2 doi 
028 5 2 |a pubmed25n1005.xml 
035 |a (DE-627)NLM301679215 
035 |a (NLM)31560238 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khurshed, Mohammed  |e verfasserin  |4 aut 
245 1 2 |a A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.07.2020 
500 |a Date Revised 17.07.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a cBioPortal 
650 4 |a cancer genomics 
650 4 |a data mining 
650 4 |a epigenetics 
650 4 |a gene expression 
650 4 |a in silico 
650 7 |a L-Lactate Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.27  |2 NLM 
650 7 |a LDHA protein, human  |2 NLM 
650 7 |a EC 1.1.1.27  |2 NLM 
650 7 |a Isocitrate Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.41  |2 NLM 
650 7 |a IDH1 protein, human  |2 NLM 
650 7 |a EC 1.1.1.42.  |2 NLM 
700 1 |a Molenaar, Remco J  |e verfasserin  |4 aut 
700 1 |a van Noorden, Cornelis Jf  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t BioTechniques  |d 1991  |g 67(2019), 4 vom: 01. Okt., Seite 172-176  |w (DE-627)NLM012627046  |x 1940-9818  |7 nnas 
773 1 8 |g volume:67  |g year:2019  |g number:4  |g day:01  |g month:10  |g pages:172-176 
856 4 0 |u http://dx.doi.org/10.2144/btn-2018-0179  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_70 
912 |a GBV_ILN_99 
912 |a GBV_ILN_121 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_350 
912 |a GBV_ILN_618 
912 |a GBV_ILN_640 
912 |a GBV_ILN_754 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2023 
912 |a GBV_ILN_2035 
912 |a GBV_ILN_2040 
912 |a GBV_ILN_2060 
912 |a GBV_ILN_2099 
912 |a GBV_ILN_2105 
912 |a GBV_ILN_2121 
912 |a GBV_ILN_2470 
951 |a AR 
952 |d 67  |j 2019  |e 4  |b 01  |c 10  |h 172-176