|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM301679215 |
003 |
DE-627 |
005 |
20250226013928.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2144/btn-2018-0179
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1005.xml
|
035 |
|
|
|a (DE-627)NLM301679215
|
035 |
|
|
|a (NLM)31560238
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Khurshed, Mohammed
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.07.2020
|
500 |
|
|
|a Date Revised 17.07.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a cBioPortal
|
650 |
|
4 |
|a cancer genomics
|
650 |
|
4 |
|a data mining
|
650 |
|
4 |
|a epigenetics
|
650 |
|
4 |
|a gene expression
|
650 |
|
4 |
|a in silico
|
650 |
|
7 |
|a L-Lactate Dehydrogenase
|2 NLM
|
650 |
|
7 |
|a EC 1.1.1.27
|2 NLM
|
650 |
|
7 |
|a LDHA protein, human
|2 NLM
|
650 |
|
7 |
|a EC 1.1.1.27
|2 NLM
|
650 |
|
7 |
|a Isocitrate Dehydrogenase
|2 NLM
|
650 |
|
7 |
|a EC 1.1.1.41
|2 NLM
|
650 |
|
7 |
|a IDH1 protein, human
|2 NLM
|
650 |
|
7 |
|a EC 1.1.1.42.
|2 NLM
|
700 |
1 |
|
|a Molenaar, Remco J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van Noorden, Cornelis Jf
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1991
|g 67(2019), 4 vom: 01. Okt., Seite 172-176
|w (DE-627)NLM012627046
|x 1940-9818
|7 nnas
|
773 |
1 |
8 |
|g volume:67
|g year:2019
|g number:4
|g day:01
|g month:10
|g pages:172-176
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2144/btn-2018-0179
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 67
|j 2019
|e 4
|b 01
|c 10
|h 172-176
|