A simple in silico approach to generate gene-expression profiles from subsets of cancer genomics data

In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these da...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:BioTechniques. - 1991. - 67(2019), 4 vom: 01. Okt., Seite 172-176
1. Verfasser: Khurshed, Mohammed (VerfasserIn)
Weitere Verfasser: Molenaar, Remco J, van Noorden, Cornelis Jf
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:BioTechniques
Schlagworte:Journal Article Research Support, Non-U.S. Gov't cBioPortal cancer genomics data mining epigenetics gene expression in silico L-Lactate Dehydrogenase EC 1.1.1.27 mehr... LDHA protein, human Isocitrate Dehydrogenase EC 1.1.1.41 IDH1 protein, human EC 1.1.1.42.
Beschreibung
Zusammenfassung:In biomedical research, large-scale profiling of gene expression has become routine and offers a valuable means to evaluate changes in onset and progression of diseases, in particular cancer. An overwhelming amount of cancer genomics data has become publicly available, and the complexity of these data makes it a challenge to perform in silico data exploration, integration and analysis, in particular for scientists lacking a background in computational programming or informatics. Many web interface tools make these large datasets accessible but are limited to process large datasets. To accelerate the translation of genomic data into new insights, we provide a simple method to explore and select data from cancer genomic datasets to generate gene-expression profiles of subsets that are of specific genetic, biological or clinical interest
Beschreibung:Date Completed 17.07.2020
Date Revised 17.07.2020
published: Print
Citation Status MEDLINE
ISSN:1940-9818
DOI:10.2144/btn-2018-0179