pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide

A coumarin-tetrapeptide conjugate, EFEK(DAC)-NH2 (1), is reported to undergo a pH-dependent interconversion between nanotubes and nanoribbons. An examination of zeta potential measurements, circular dichroism (CD) spectra, and microscopy imaging (transmission electron microscopy and atomic force mic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 38 vom: 24. Sept., Seite 12460-12468
1. Verfasser: Mason, McKensie L (VerfasserIn)
Weitere Verfasser: Lalisse, Remy F, Finnegan, Tyler J, Hadad, Christopher M, Modarelli, David A, Parquette, Jon R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Coumarins Nanotubes, Carbon Oligopeptides
Beschreibung
Zusammenfassung:A coumarin-tetrapeptide conjugate, EFEK(DAC)-NH2 (1), is reported to undergo a pH-dependent interconversion between nanotubes and nanoribbons. An examination of zeta potential measurements, circular dichroism (CD) spectra, and microscopy imaging (transmission electron microscopy and atomic force microscopy) identified three different self-assembly regimes based on pH: (1) pH 2-5, positively charged, left-handed helical nanotubes; (2) pH 6-8, negatively charged, right-handed helical nanoribbons; and (3) pH ≥ 9.0, a monomeric/disassembled peptide. The nanotubes exhibited uniform diameters of 41 ± 5 nm and wall thicknesses of 4.8 ± 0.8 nm, whereas the nanoribbons existed as either flat or twisted sheets ranging in width from 11 to 60 nm with heights of 8 ± 1 nm. The UV-vis and CD spectra of the most common antiparallel, β-sheet conformation of 1-dimer were simulated at the B3LYP/def2svpd level of theory in implicit water. These studies indicated that the transition from nanotubes to nanoribbons was coupled to an M → P helical inversion of the coumarin packing orientation, respectively, within the nanostructures. The assembly process was driven by β-sheet aggregation and π-π interactions, leading to the formation of nanoribbons, which progressively wound into helical ribbons and laterally grew into smooth nanotubes as the pH decreased
Beschreibung:Date Completed 17.08.2020
Date Revised 17.08.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01939