CloudDet : Interactive Visual Analysis of Anomalous Performances in Cloud Computing Systems

Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing. These te...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 1 vom: 22. Jan., Seite 1107-1117
1. Verfasser: Xu, Ke (VerfasserIn)
Weitere Verfasser: Wang, Yun, Yang, Leni, Wang, Yifang, Qiao, Bo, Qin, Si, Xu, Yong, Zhang, Haidong, Qu, Huamin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM300527217
003 DE-627
005 20231225102722.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934613  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300527217 
035 |a (NLM)31442994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Ke  |e verfasserin  |4 aut 
245 1 0 |a CloudDet  |b Interactive Visual Analysis of Anomalous Performances in Cloud Computing Systems 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing. These techniques are usually adopted to track the performance metrics of the system (e.g., CPU, memory, and disk I/O), represented by a multivariate time series. However, given the complex characteristics of cloud computing data, the effectiveness of these automated methods is affected. Thus, substantial human judgment on the automated analysis results is required for anomaly interpretation. In this paper, we present a unified visual analytics system named CloudDet to interactively detect, inspect, and diagnose anomalies in cloud computing systems. A novel unsupervised anomaly detection algorithm is developed to identify anomalies based on the specific temporal patterns of the given metrics data (e.g., the periodic pattern). Rich visualization and interaction designs are used to help understand the anomalies in the spatial and temporal context. We demonstrate the effectiveness of CloudDet through a quantitative evaluation, two case studies with real-world data, and interviews with domain experts 
650 4 |a Journal Article 
700 1 |a Wang, Yun  |e verfasserin  |4 aut 
700 1 |a Yang, Leni  |e verfasserin  |4 aut 
700 1 |a Wang, Yifang  |e verfasserin  |4 aut 
700 1 |a Qiao, Bo  |e verfasserin  |4 aut 
700 1 |a Qin, Si  |e verfasserin  |4 aut 
700 1 |a Xu, Yong  |e verfasserin  |4 aut 
700 1 |a Zhang, Haidong  |e verfasserin  |4 aut 
700 1 |a Qu, Huamin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 1 vom: 22. Jan., Seite 1107-1117  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:22  |g month:01  |g pages:1107-1117 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934613  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 22  |c 01  |h 1107-1117