CloudDet : Interactive Visual Analysis of Anomalous Performances in Cloud Computing Systems

Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing. These te...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1998. - 26(2020), 1 vom: 22. Jan., Seite 1107-1117
Auteur principal: Xu, Ke (Auteur)
Autres auteurs: Wang, Yun, Yang, Leni, Wang, Yifang, Qiao, Bo, Qin, Si, Xu, Yong, Zhang, Haidong, Qu, Huamin
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
Description
Résumé:Detecting and analyzing potential anomalous performances in cloud computing systems is essential for avoiding losses to customers and ensuring the efficient operation of the systems. To this end, a variety of automated techniques have been developed to identify anomalies in cloud computing. These techniques are usually adopted to track the performance metrics of the system (e.g., CPU, memory, and disk I/O), represented by a multivariate time series. However, given the complex characteristics of cloud computing data, the effectiveness of these automated methods is affected. Thus, substantial human judgment on the automated analysis results is required for anomaly interpretation. In this paper, we present a unified visual analytics system named CloudDet to interactively detect, inspect, and diagnose anomalies in cloud computing systems. A novel unsupervised anomaly detection algorithm is developed to identify anomalies based on the specific temporal patterns of the given metrics data (e.g., the periodic pattern). Rich visualization and interaction designs are used to help understand the anomalies in the spatial and temporal context. We demonstrate the effectiveness of CloudDet through a quantitative evaluation, two case studies with real-world data, and interviews with domain experts
Description:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2019.2934613