Online Multi-expert Learning for Visual Tracking

The correlation filters based trackers have achieved an excellent performance for object tracking in recent years. However, most existing methods use only one filter but ignore the information of the previous filters. In this paper, we propose a novel online multi-expert learning algorithm for visua...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 16. Aug.
1. Verfasser: Li, Zhetao (VerfasserIn)
Weitere Verfasser: Wei, Wei, Zhang, Tianzhu, Wang, Meng, Hou, Sujuan, Peng, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300350996
003 DE-627
005 20240229162308.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2931082  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM300350996 
035 |a (NLM)31425073 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zhetao  |e verfasserin  |4 aut 
245 1 0 |a Online Multi-expert Learning for Visual Tracking 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The correlation filters based trackers have achieved an excellent performance for object tracking in recent years. However, most existing methods use only one filter but ignore the information of the previous filters. In this paper, we propose a novel online multi-expert learning algorithm for visual tracking. In our proposed scheme, there are former trackers which retain the previous filters, and those trackers will give their predictions in each frame. The current tracker represents the filter of current frame, and both the current tracker and the former trackers constitute our expert ensemble. We use an adaptive Second-order Quantile strategy to learn the weights of each expert, which can take full advantage of all the experts. To simplify our model and remove some bad experts, we prune our models via a minimum entropy criterion. Finally, we propose a new update strategy to avoid the model corruption problem. Extensive experimental results on both OTB2013 and OTB2015 benchmarks demonstrate that our proposed tracker performs favorably against state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Wei, Wei  |e verfasserin  |4 aut 
700 1 |a Zhang, Tianzhu  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Hou, Sujuan  |e verfasserin  |4 aut 
700 1 |a Peng, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 16. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:16  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2931082  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 16  |c 08