Online Multi-expert Learning for Visual Tracking
The correlation filters based trackers have achieved an excellent performance for object tracking in recent years. However, most existing methods use only one filter but ignore the information of the previous filters. In this paper, we propose a novel online multi-expert learning algorithm for visua...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 16. Aug. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | The correlation filters based trackers have achieved an excellent performance for object tracking in recent years. However, most existing methods use only one filter but ignore the information of the previous filters. In this paper, we propose a novel online multi-expert learning algorithm for visual tracking. In our proposed scheme, there are former trackers which retain the previous filters, and those trackers will give their predictions in each frame. The current tracker represents the filter of current frame, and both the current tracker and the former trackers constitute our expert ensemble. We use an adaptive Second-order Quantile strategy to learn the weights of each expert, which can take full advantage of all the experts. To simplify our model and remove some bad experts, we prune our models via a minimum entropy criterion. Finally, we propose a new update strategy to avoid the model corruption problem. Extensive experimental results on both OTB2013 and OTB2015 benchmarks demonstrate that our proposed tracker performs favorably against state-of-the-art methods |
---|---|
Beschreibung: | Date Revised 27.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2019.2931082 |