Deep Learning based Picture-Wise Just Noticeable Distortion Prediction Model for Image Compression

Picture Wise Just Noticeable Difference (PW-JND), which accounts for the minimum difference of a picture that human visual system can perceive, can be widely used in perception-oriented image and video processing. However, the conventional Just Noticeable Difference (JND) models calculate the JND th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 13. Aug.
1. Verfasser: Liu, Huanhua (VerfasserIn)
Weitere Verfasser: Zhang, Yun, Zhang, Huan, Fan, Chunling, Kwong, Sam, Kuo, C-C Jay, Fan, Xiaoping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300350600
003 DE-627
005 20240229162308.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2933743  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM300350600 
035 |a (NLM)31425033 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Huanhua  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning based Picture-Wise Just Noticeable Distortion Prediction Model for Image Compression 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Picture Wise Just Noticeable Difference (PW-JND), which accounts for the minimum difference of a picture that human visual system can perceive, can be widely used in perception-oriented image and video processing. However, the conventional Just Noticeable Difference (JND) models calculate the JND threshold for each pixel or sub-band separately, which may not reflect the total masking effect of a picture accurately. In this paper, we propose a deep learning based PW-JND prediction model for image compression. Firstly, we formulate the task of predicting PW-JND as a multi-class classification problem, and propose a framework to transform the multi-class classification problem to a binary classification problem solved by just one binary classifier. Secondly, we construct a deep learning based binary classifier named perceptually lossy/lossless predictor which can predict whether an image is perceptually lossy to another or not. Finally, we propose a sliding window based search strategy to predict PW-JND based on the prediction results of the perceptually lossy/lossless predictor. Experimental results show that the mean accuracy of the perceptually lossy/lossless predictor reaches 92%, and the absolute prediction error of the proposed PW-JND model is 0.79 dB on average, which shows the superiority of the proposed PW-JND model to the conventional JND models 
650 4 |a Journal Article 
700 1 |a Zhang, Yun  |e verfasserin  |4 aut 
700 1 |a Zhang, Huan  |e verfasserin  |4 aut 
700 1 |a Fan, Chunling  |e verfasserin  |4 aut 
700 1 |a Kwong, Sam  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
700 1 |a Fan, Xiaoping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 13. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:13  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2933743  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 13  |c 08