|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM300350600 |
003 |
DE-627 |
005 |
20240229162308.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2019.2933743
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM300350600
|
035 |
|
|
|a (NLM)31425033
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Huanhua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Deep Learning based Picture-Wise Just Noticeable Distortion Prediction Model for Image Compression
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Picture Wise Just Noticeable Difference (PW-JND), which accounts for the minimum difference of a picture that human visual system can perceive, can be widely used in perception-oriented image and video processing. However, the conventional Just Noticeable Difference (JND) models calculate the JND threshold for each pixel or sub-band separately, which may not reflect the total masking effect of a picture accurately. In this paper, we propose a deep learning based PW-JND prediction model for image compression. Firstly, we formulate the task of predicting PW-JND as a multi-class classification problem, and propose a framework to transform the multi-class classification problem to a binary classification problem solved by just one binary classifier. Secondly, we construct a deep learning based binary classifier named perceptually lossy/lossless predictor which can predict whether an image is perceptually lossy to another or not. Finally, we propose a sliding window based search strategy to predict PW-JND based on the prediction results of the perceptually lossy/lossless predictor. Experimental results show that the mean accuracy of the perceptually lossy/lossless predictor reaches 92%, and the absolute prediction error of the proposed PW-JND model is 0.79 dB on average, which shows the superiority of the proposed PW-JND model to the conventional JND models
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhang, Yun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Huan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Chunling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kwong, Sam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuo, C-C Jay
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fan, Xiaoping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2019) vom: 13. Aug.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2019
|g day:13
|g month:08
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2019.2933743
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2019
|b 13
|c 08
|