Deep Learning based Picture-Wise Just Noticeable Distortion Prediction Model for Image Compression

Picture Wise Just Noticeable Difference (PW-JND), which accounts for the minimum difference of a picture that human visual system can perceive, can be widely used in perception-oriented image and video processing. However, the conventional Just Noticeable Difference (JND) models calculate the JND th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 13. Aug.
1. Verfasser: Liu, Huanhua (VerfasserIn)
Weitere Verfasser: Zhang, Yun, Zhang, Huan, Fan, Chunling, Kwong, Sam, Kuo, C-C Jay, Fan, Xiaoping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Picture Wise Just Noticeable Difference (PW-JND), which accounts for the minimum difference of a picture that human visual system can perceive, can be widely used in perception-oriented image and video processing. However, the conventional Just Noticeable Difference (JND) models calculate the JND threshold for each pixel or sub-band separately, which may not reflect the total masking effect of a picture accurately. In this paper, we propose a deep learning based PW-JND prediction model for image compression. Firstly, we formulate the task of predicting PW-JND as a multi-class classification problem, and propose a framework to transform the multi-class classification problem to a binary classification problem solved by just one binary classifier. Secondly, we construct a deep learning based binary classifier named perceptually lossy/lossless predictor which can predict whether an image is perceptually lossy to another or not. Finally, we propose a sliding window based search strategy to predict PW-JND based on the prediction results of the perceptually lossy/lossless predictor. Experimental results show that the mean accuracy of the perceptually lossy/lossless predictor reaches 92%, and the absolute prediction error of the proposed PW-JND model is 0.79 dB on average, which shows the superiority of the proposed PW-JND model to the conventional JND models
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2019.2933743