Trace and bulk organics removal during ozone-biofiltration treatment for potable reuse applications

© 2019 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 92(2020), 3 vom: 30. März, Seite 430-440
1. Verfasser: Sundaram, Vijay (VerfasserIn)
Weitere Verfasser: Pagilla, Krishna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article advanced water treatment biofiltration biological activated carbon contaminants of emerging concern ozonation potable reuse Drinking Water Water Pollutants, Chemical Ozone 66H7ZZK23N
Beschreibung
Zusammenfassung:© 2019 Water Environment Federation.
This study investigated impact of ozone/biological activated carbon (BAC) filtration design and operational parameters on contaminants of emerging concern (CEC) and bulk organics removal over 450 days of operation. Two parallel BAC filters with identical media and influent were maintained, each at a different empty bed contact time of 10 and 20 min. This study captured the CEC removal performance of a BAC filter over an extended operational period after treating 65,000 bed volumes. Ozone system was operated at ozone dose to TOC ratio range of 0.9-2. Biofilter with lower EBCT (10 min) and exhausted media resulted in poor removals of Tris(2-chloroethyl) phosphate (TCEP), perfluorooctanoic acid (PFOA), sucralose, meprobamate, N,N-diethyl-m-toluamide (DEET), and cotinine. Biofilter with higher EBCT (20 min) and remaining adsorptive effects resulted in significant (84% or more) removal of all CECs that were detected in the ozonated effluent. Increasing both ozone dose and BAC EBCT resulted in increased removal of UV absorbance (UVA254 ). The evaluation of impact of ozone:TOC ratio and BAC EBCT on CEC removal, bulk organics (TOC), and UVA254 performed in this study confirmed the importance of these two parameters on overall success of nonreverse osmosis (RO) potable reuse projects. PRACTITIONER POINTS: Ozone-BAC biofiltration is feasible strategy for indirect potable reuse water reclamation. Ozone-BAC empty bed contact time is a critical design parameter. Adsorption and biodegradation are both important mechanisms for trace organic contaminant removal in BAC
Beschreibung:Date Completed 06.03.2020
Date Revised 06.03.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.1202