Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds
First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 2 vom: 26. Feb., Seite 459-472 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2021
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |