Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds

First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 2 vom: 26. Feb., Seite 459-472
1. Verfasser: Zhou, Pan (VerfasserIn)
Weitere Verfasser: Yuan, Xiao-Tong, Yan, Shuicheng, Feng, Jiashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300087063
003 DE-627
005 20250225185440.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2933841  |2 doi 
028 5 2 |a pubmed25n1000.xml 
035 |a (DE-627)NLM300087063 
035 |a (NLM)31398110 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Pan  |e verfasserin  |4 aut 
245 1 0 |a Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an ϵ-approximate stationary point within [Formula: see text] stochastic gradient evaluations, beating the best-known complexity [Formula: see text]; for online optimization, R-SPIDER is shown to converge with [Formula: see text] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods 
650 4 |a Journal Article 
700 1 |a Yuan, Xiao-Tong  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Feng, Jiashi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 2 vom: 26. Feb., Seite 459-472  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:2  |g day:26  |g month:02  |g pages:459-472 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2933841  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 2  |b 26  |c 02  |h 459-472