BraggNet : integrating Bragg peaks using neural networks

Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 52(2019), Pt 4 vom: 01. Aug., Seite 854-863
1. Verfasser: Sullivan, Brendan (VerfasserIn)
Weitere Verfasser: Archibald, Rick, Azadmanesh, Jahaun, Vandavasi, Venu Gopal, Langan, Patricia S, Coates, Leighton, Lynch, Vickie, Langan, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article computational modelling integration machine learning neural networks neutron crystallography
LEADER 01000caa a22002652 4500
001 NLM300066554
003 DE-627
005 20240719232116.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576719008665  |2 doi 
028 5 2 |a pubmed24n1475.xml 
035 |a (DE-627)NLM300066554 
035 |a (NLM)31396028 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sullivan, Brendan  |e verfasserin  |4 aut 
245 1 0 |a BraggNet  |b integrating Bragg peaks using neural networks 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.07.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data 
650 4 |a Journal Article 
650 4 |a computational modelling 
650 4 |a integration 
650 4 |a machine learning 
650 4 |a neural networks 
650 4 |a neutron crystallography 
700 1 |a Archibald, Rick  |e verfasserin  |4 aut 
700 1 |a Azadmanesh, Jahaun  |e verfasserin  |4 aut 
700 1 |a Vandavasi, Venu Gopal  |e verfasserin  |4 aut 
700 1 |a Langan, Patricia S  |e verfasserin  |4 aut 
700 1 |a Coates, Leighton  |e verfasserin  |4 aut 
700 1 |a Lynch, Vickie  |e verfasserin  |4 aut 
700 1 |a Langan, Paul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 52(2019), Pt 4 vom: 01. Aug., Seite 854-863  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:52  |g year:2019  |g number:Pt 4  |g day:01  |g month:08  |g pages:854-863 
856 4 0 |u http://dx.doi.org/10.1107/S1600576719008665  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2019  |e Pt 4  |b 01  |c 08  |h 854-863