BraggNet : integrating Bragg peaks using neural networks

Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulse...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 52(2019), Pt 4 vom: 01. Aug., Seite 854-863
1. Verfasser: Sullivan, Brendan (VerfasserIn)
Weitere Verfasser: Archibald, Rick, Azadmanesh, Jahaun, Vandavasi, Venu Gopal, Langan, Patricia S, Coates, Leighton, Lynch, Vickie, Langan, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article computational modelling integration machine learning neural networks neutron crystallography
Beschreibung
Zusammenfassung:Neutron crystallography offers enormous potential to complement structures from X-ray crystallography by clarifying the positions of low-Z elements, namely hydrogen. Macromolecular neutron crystallography, however, remains limited, in part owing to the challenge of integrating peak shapes from pulsed-source experiments. To advance existing software, this article demonstrates the use of machine learning to refine peak locations, predict peak shapes and yield more accurate integrated intensities when applied to whole data sets from a protein crystal. The artificial neural network, based on the U-Net architecture commonly used for image segmentation, is trained using about 100 000 simulated training peaks derived from strong peaks. After 100 training epochs (a round of training over the whole data set broken into smaller batches), training converges and achieves a Dice coefficient of around 65%, in contrast to just 15% for negative control data sets. Integrating whole peak sets using the neural network yields improved intensity statistics compared with other integration methods, including k-nearest neighbours. These results demonstrate, for the first time, that neural networks can learn peak shapes and be used to integrate Bragg peaks. It is expected that integration using neural networks can be further developed to increase the quality of neutron, electron and X-ray crystallography data
Beschreibung:Date Revised 19.07.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0021-8898
DOI:10.1107/S1600576719008665