|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM300061900 |
003 |
DE-627 |
005 |
20240229162301.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2019.2931534
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM300061900
|
035 |
|
|
|a (NLM)31395548
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Anran
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Holistic Multi-modal Memory Network for Movie Question Answering
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Answering questions using multi-modal context is a challenging problem as it requires a deep integration of diverse data sources. Existing approaches only consider a subset of all possible interactions among data sources during one attention hop. In this paper, we present a Holistic Multi-modal Memory Network (HMMN) framework that fully considers interactions between different input sources (multi-modal context, question) at each hop. In addition, to hone in on relevant information, our framework takes answer choices into consideration during the context retrieval stage. Our HMMN framework effectively integrates information from the multi-modal context, question, and answer choices, enabling more informative context to be retrieved for question answering. Experimental results on the MovieQA and TVQA datasets validate the effectiveness of our HMMN framework. Extensive ablation studies show the importance of holistic reasoning and reveal the contributions of different attention strategies to model performance
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Luu, Anh Tuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Foo, Chuan-Sheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Hongyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tay, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chandrasekhar, Vijay
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2019) vom: 02. Aug.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2019
|g day:02
|g month:08
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2019.2931534
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2019
|b 02
|c 08
|