Holistic Multi-modal Memory Network for Movie Question Answering

Answering questions using multi-modal context is a challenging problem as it requires a deep integration of diverse data sources. Existing approaches only consider a subset of all possible interactions among data sources during one attention hop. In this paper, we present a Holistic Multi-modal Memo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 02. Aug.
1. Verfasser: Wang, Anran (VerfasserIn)
Weitere Verfasser: Luu, Anh Tuan, Foo, Chuan-Sheng, Zhu, Hongyuan, Tay, Yi, Chandrasekhar, Vijay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300061900
003 DE-627
005 20240229162301.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2931534  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM300061900 
035 |a (NLM)31395548 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Anran  |e verfasserin  |4 aut 
245 1 0 |a Holistic Multi-modal Memory Network for Movie Question Answering 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Answering questions using multi-modal context is a challenging problem as it requires a deep integration of diverse data sources. Existing approaches only consider a subset of all possible interactions among data sources during one attention hop. In this paper, we present a Holistic Multi-modal Memory Network (HMMN) framework that fully considers interactions between different input sources (multi-modal context, question) at each hop. In addition, to hone in on relevant information, our framework takes answer choices into consideration during the context retrieval stage. Our HMMN framework effectively integrates information from the multi-modal context, question, and answer choices, enabling more informative context to be retrieved for question answering. Experimental results on the MovieQA and TVQA datasets validate the effectiveness of our HMMN framework. Extensive ablation studies show the importance of holistic reasoning and reveal the contributions of different attention strategies to model performance 
650 4 |a Journal Article 
700 1 |a Luu, Anh Tuan  |e verfasserin  |4 aut 
700 1 |a Foo, Chuan-Sheng  |e verfasserin  |4 aut 
700 1 |a Zhu, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Tay, Yi  |e verfasserin  |4 aut 
700 1 |a Chandrasekhar, Vijay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 02. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:02  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2931534  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 02  |c 08