Holistic Multi-modal Memory Network for Movie Question Answering
Answering questions using multi-modal context is a challenging problem as it requires a deep integration of diverse data sources. Existing approaches only consider a subset of all possible interactions among data sources during one attention hop. In this paper, we present a Holistic Multi-modal Memo...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 02. Aug. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Answering questions using multi-modal context is a challenging problem as it requires a deep integration of diverse data sources. Existing approaches only consider a subset of all possible interactions among data sources during one attention hop. In this paper, we present a Holistic Multi-modal Memory Network (HMMN) framework that fully considers interactions between different input sources (multi-modal context, question) at each hop. In addition, to hone in on relevant information, our framework takes answer choices into consideration during the context retrieval stage. Our HMMN framework effectively integrates information from the multi-modal context, question, and answer choices, enabling more informative context to be retrieved for question answering. Experimental results on the MovieQA and TVQA datasets validate the effectiveness of our HMMN framework. Extensive ablation studies show the importance of holistic reasoning and reveal the contributions of different attention strategies to model performance |
---|---|
Beschreibung: | Date Revised 27.02.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2019.2931534 |