In Situ Sensing of Reactive Oxygen Species on Dye-Stained Single DNA Molecules under Illumination

Reactive oxygen species (ROS) are a necessary evil in many biological systems and have been measured with fluorescent probes at the ensemble levels both in vitro and in vivo. Measuring ROS generated from a single molecule is important for mechanistic studies, yet measuring ROS near a dye-labeled sin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 35 vom: 03. Sept., Seite 11308-11314
1. Verfasser: Pyle, Joseph R (VerfasserIn)
Weitere Verfasser: Sy Piecco, Kurt Waldo E, Vicente, Juvinch R, Chen, Jixin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Fluorescent Dyes Reactive Oxygen Species DNA 9007-49-2
Beschreibung
Zusammenfassung:Reactive oxygen species (ROS) are a necessary evil in many biological systems and have been measured with fluorescent probes at the ensemble levels both in vitro and in vivo. Measuring ROS generated from a single molecule is important for mechanistic studies, yet measuring ROS near a dye-labeled single-molecule under illumination has been challenging. Here, we use CellROX, a group of ROS probes, to sense ROS near dye-stained DNA that has been flow-stretched and immobilized on a surface. ROS is responsible for the photodamage of DNA molecules under this circumstance. In this report, we confirmed the ROS sensing reaction in bulk solutions and optimized the conditions for single-molecule experiments including the selection of substrates, dye concentrations, probes in the CellROX series, excitation lasers, and emission filter-sets. We observed a correlation between ROS and the dye-labeled DNA and localized the ROS-activated CellROX probe molecules at both the ensemble level and the single-molecule level
Beschreibung:Date Completed 11.08.2020
Date Revised 03.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01822