In Situ Sensing of Reactive Oxygen Species on Dye-Stained Single DNA Molecules under Illumination
Reactive oxygen species (ROS) are a necessary evil in many biological systems and have been measured with fluorescent probes at the ensemble levels both in vitro and in vivo. Measuring ROS generated from a single molecule is important for mechanistic studies, yet measuring ROS near a dye-labeled sin...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 35 vom: 03. Sept., Seite 11308-11314 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Fluorescent Dyes Reactive Oxygen Species DNA 9007-49-2 |
Zusammenfassung: | Reactive oxygen species (ROS) are a necessary evil in many biological systems and have been measured with fluorescent probes at the ensemble levels both in vitro and in vivo. Measuring ROS generated from a single molecule is important for mechanistic studies, yet measuring ROS near a dye-labeled single-molecule under illumination has been challenging. Here, we use CellROX, a group of ROS probes, to sense ROS near dye-stained DNA that has been flow-stretched and immobilized on a surface. ROS is responsible for the photodamage of DNA molecules under this circumstance. In this report, we confirmed the ROS sensing reaction in bulk solutions and optimized the conditions for single-molecule experiments including the selection of substrates, dye concentrations, probes in the CellROX series, excitation lasers, and emission filter-sets. We observed a correlation between ROS and the dye-labeled DNA and localized the ROS-activated CellROX probe molecules at both the ensemble level and the single-molecule level |
---|---|
Beschreibung: | Date Completed 11.08.2020 Date Revised 03.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.9b01822 |