Upconversion NanoparticlesCarbon Dots@Meso-SiO2 Sandwiched Core-Shell Nanohybrids with Tunable Dual-Mode Luminescence for 3D Anti-Counterfeiting Barcodes

Development of advanced fluorescent materials for constructing a secure and unclonable encryption is urgently required; however, their application in anti-counterfeiting applications is a great challenge. In this work, we proposed and synthesized a new type of upconversion nanoparticlescarbon dots@m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 35 vom: 03. Sept., Seite 11503-11511
1. Verfasser: Tan, Haihu (VerfasserIn)
Weitere Verfasser: Gong, Guo, Xie, Shaowen, Song, Ya, Zhang, Changfan, Li, Na, Zhang, Dong, Xu, Lijian, Xu, Jianxiong, Zheng, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Development of advanced fluorescent materials for constructing a secure and unclonable encryption is urgently required; however, their application in anti-counterfeiting applications is a great challenge. In this work, we proposed and synthesized a new type of upconversion nanoparticlescarbon dots@meso-SiO2 nanohybrids by integrating two fluorescent materials of lanthanide-doped NaYF4 upconversion nanoparticles (UCNPs) and carbon dots (CDs) into mesoporous silica (mSiO2) to produce a novel sandwichlike core-shell structure and a dual-mode fluorescence from UCNPs and CDs. By tailoring the UCNP core of different upconversion luminescence, all three kinds of dual-mode luminescent UCNPs@CDs@mSiO2 nanohybrids exhibited typical RGB upconversion luminescence under a 980 nm laser and blue downconversion luminescence under a 365 nm UV light. Due to strong the hydrophilic nature of the nanohybrids, they can be further fabricated into environmentally benign luminescent inks for creating highly secured, fluorescent-based, three-dimensional anti-counterfeiting barcodes via inkjet printing. The resultant UCNPs@CDs@mSiO2 inks with a dual-mode and tunable luminescence nature endow the inkjet-printing barcodes with an extremely high encoding capacity and high security. Such dual-mode fluorescent inks and barcodes are simple to fabricate, easy to view, efficient for coding, and difficult to clone, thus making them promising nanomaterials for anti-counterfeiting applications
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01919