|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM299706699 |
003 |
DE-627 |
005 |
20250225172141.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erz350
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0998.xml
|
035 |
|
|
|a (DE-627)NLM299706699
|
035 |
|
|
|a (NLM)31359063
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Palma, José M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nitric oxide in the physiology and quality of fleshy fruits
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.07.2020
|
500 |
|
|
|a Date Revised 20.07.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a Fruits are unique to flowering plants and confer a selective advantage as they facilitate seed maturation and dispersal. In fleshy fruits, development and ripening are associated with numerous structural, biochemical, and physiological changes, including modifications in the general appearance, texture, flavor, and aroma, which ultimately convert the immature fruit into a considerably more attractive and palatable structure for seed dispersal by animals. Treatment with exogenous nitric oxide (NO) delays fruit ripening, prevents chilling damage, promotes disease resistance, and enhances the nutritional value. The ripening process is influenced by NO, which operates antagonistically to ethylene, but it also interacts with other regulatory molecules such as abscisic acid, auxin, jasmonic acid, salicylic acid, melatonin, and hydrogen sulfide. NO content progressively declines during fruit ripening, with concomitant increases in protein nitration and nitrosation, two post-translational modifications that are promoted by reactive nitrogen species. Dissecting the intimate interactions of NO with other ripening-associated factors, including reactive oxygen species, antioxidants, and the aforementioned phytohormones, remains a challenging subject of research. In this context, integrative 'omics' and gene-editing approaches may provide additional knowledge of the impact of NO in the regulatory processes involved in controlling physiology and quality traits in both climacteric and non-climacteric fruits
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Antioxidants
|
650 |
|
4 |
|a chilling
|
650 |
|
4 |
|a disease resistance
|
650 |
|
4 |
|a nitric oxide
|
650 |
|
4 |
|a omics
|
650 |
|
4 |
|a phytohormones
|
650 |
|
4 |
|a post-translational modifications
|
650 |
|
4 |
|a reactive nitrogen species
|
650 |
|
4 |
|a reactive oxygen species
|
650 |
|
4 |
|a ripening
|
650 |
|
7 |
|a Nitric Oxide
|2 NLM
|
650 |
|
7 |
|a 31C4KY9ESH
|2 NLM
|
700 |
1 |
|
|a Freschi, Luciano
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rodríguez-Ruiz, Marta
|e verfasserin
|4 aut
|
700 |
1 |
|
|a González-Gordo, Salvador
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Corpas, Francisco J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 70(2019), 17 vom: 29. Aug., Seite 4405-4417
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:70
|g year:2019
|g number:17
|g day:29
|g month:08
|g pages:4405-4417
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erz350
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 70
|j 2019
|e 17
|b 29
|c 08
|h 4405-4417
|