LEADER 01000caa a22002652 4500
001 NLM299235718
003 DE-627
005 20250225152912.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14767  |2 doi 
028 5 2 |a pubmed25n0997.xml 
035 |a (DE-627)NLM299235718 
035 |a (NLM)31310673 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Requena Suarez, Daniela  |e verfasserin  |4 aut 
245 1 0 |a Estimating aboveground net biomass change for tropical and subtropical forests  |b Refinement of IPCC default rates using forest plot data 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.11.2019 
500 |a Date Revised 10.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. 
520 |a As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1  year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1  year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1  year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 4 |a (sub)tropical forests 
650 4 |a IPCC 
650 4 |a biomass change 
650 4 |a global ecological zones 
650 4 |a managed and logged forests 
650 4 |a old-growth forests 
650 4 |a secondary forests 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
700 1 |a Rozendaal, Danaë M A  |e verfasserin  |4 aut 
700 1 |a De Sy, Veronique  |e verfasserin  |4 aut 
700 1 |a Phillips, Oliver L  |e verfasserin  |4 aut 
700 1 |a Alvarez-Dávila, Esteban  |e verfasserin  |4 aut 
700 1 |a Anderson-Teixeira, Kristina  |e verfasserin  |4 aut 
700 1 |a Araujo-Murakami, Alejandro  |e verfasserin  |4 aut 
700 1 |a Arroyo, Luzmila  |e verfasserin  |4 aut 
700 1 |a Baker, Timothy R  |e verfasserin  |4 aut 
700 1 |a Bongers, Frans  |e verfasserin  |4 aut 
700 1 |a Brienen, Roel J W  |e verfasserin  |4 aut 
700 1 |a Carter, Sarah  |e verfasserin  |4 aut 
700 1 |a Cook-Patton, Susan C  |e verfasserin  |4 aut 
700 1 |a Feldpausch, Ted R  |e verfasserin  |4 aut 
700 1 |a Griscom, Bronson W  |e verfasserin  |4 aut 
700 1 |a Harris, Nancy  |e verfasserin  |4 aut 
700 1 |a Hérault, Bruno  |e verfasserin  |4 aut 
700 1 |a Honorio Coronado, Eurídice N  |e verfasserin  |4 aut 
700 1 |a Leavitt, Sara M  |e verfasserin  |4 aut 
700 1 |a Lewis, Simon L  |e verfasserin  |4 aut 
700 1 |a Marimon, Beatriz S  |e verfasserin  |4 aut 
700 1 |a Monteagudo Mendoza, Abel  |e verfasserin  |4 aut 
700 1 |a Kassi N'dja, Justin  |e verfasserin  |4 aut 
700 1 |a N'Guessan, Anny Estelle  |e verfasserin  |4 aut 
700 1 |a Poorter, Lourens  |e verfasserin  |4 aut 
700 1 |a Qie, Lan  |e verfasserin  |4 aut 
700 1 |a Rutishauser, Ervan  |e verfasserin  |4 aut 
700 1 |a Sist, Plinio  |e verfasserin  |4 aut 
700 1 |a Sonké, Bonaventure  |e verfasserin  |4 aut 
700 1 |a Sullivan, Martin J P  |e verfasserin  |4 aut 
700 1 |a Vilanova, Emilio  |e verfasserin  |4 aut 
700 1 |a Wang, Maria M H  |e verfasserin  |4 aut 
700 1 |a Martius, Christopher  |e verfasserin  |4 aut 
700 1 |a Herold, Martin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 25(2019), 11 vom: 28. Nov., Seite 3609-3624  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:11  |g day:28  |g month:11  |g pages:3609-3624 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14767  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 11  |b 28  |c 11  |h 3609-3624