An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 128(2019) vom: 15. Aug., Seite 84-95
1. Verfasser: Shen, Shiwen (VerfasserIn)
Weitere Verfasser: Han, Simon X, Aberle, Denise R, Bui, Alex A, Hsu, William
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Computed tomography Lung nodule classification convolutional neural networks deep learning lung cancer diagnosis model interpretability
LEADER 01000naa a22002652 4500
001 NLM299100790
003 DE-627
005 20231225095612.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2019.01.048  |2 doi 
028 5 2 |a pubmed24n0996.xml 
035 |a (DE-627)NLM299100790 
035 |a (NLM)31296975 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Shiwen  |e verfasserin  |4 aut 
245 1 3 |a An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by end users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level semantic features; and 2) a high-level prediction of nodule malignancy. The low-level outputs reflect diagnostic features often reported by radiologists and serve to explain how the model interprets the images in an expert-interpretable manner. The information from these low-level outputs, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level output. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to using a 3D CNN alone 
650 4 |a Journal Article 
650 4 |a Computed tomography 
650 4 |a Lung nodule classification 
650 4 |a convolutional neural networks 
650 4 |a deep learning 
650 4 |a lung cancer diagnosis 
650 4 |a model interpretability 
700 1 |a Han, Simon X  |e verfasserin  |4 aut 
700 1 |a Aberle, Denise R  |e verfasserin  |4 aut 
700 1 |a Bui, Alex A  |e verfasserin  |4 aut 
700 1 |a Hsu, William  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 128(2019) vom: 15. Aug., Seite 84-95  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:128  |g year:2019  |g day:15  |g month:08  |g pages:84-95 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2019.01.048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 128  |j 2019  |b 15  |c 08  |h 84-95