An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification
While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability...
Veröffentlicht in: | Expert systems with applications. - 1999. - 128(2019) vom: 15. Aug., Seite 84-95 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Expert systems with applications |
Schlagworte: | Journal Article Computed tomography Lung nodule classification convolutional neural networks deep learning lung cancer diagnosis model interpretability |
Online verfügbar |
Volltext |