An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

While deep learning methods have demonstrated performance comparable to human readers in tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 128(2019) vom: 15. Aug., Seite 84-95
1. Verfasser: Shen, Shiwen (VerfasserIn)
Weitere Verfasser: Han, Simon X, Aberle, Denise R, Bui, Alex A, Hsu, William
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Computed tomography Lung nodule classification convolutional neural networks deep learning lung cancer diagnosis model interpretability