Joint Task-Recursive Learning for RGB-D Scene Understanding

RGB-D scene understanding under monocular camera is an emerging and challenging topic with many potential applications. In this paper, we propose a novel Task-Recursive Learning (TRL) framework to jointly and recurrently conduct three representative tasks therein containing depth estimation, surface...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 10 vom: 02. Okt., Seite 2608-2623
1. Verfasser: Zhang, Zhenyu (VerfasserIn)
Weitere Verfasser: Cui, Zhen, Xu, Chunyan, Jie, Zequn, Li, Xiang, Yang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM299082458
003 DE-627
005 20250225145428.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2926728  |2 doi 
028 5 2 |a pubmed25n0996.xml 
035 |a (DE-627)NLM299082458 
035 |a (NLM)31295103 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Zhenyu  |e verfasserin  |4 aut 
245 1 0 |a Joint Task-Recursive Learning for RGB-D Scene Understanding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a RGB-D scene understanding under monocular camera is an emerging and challenging topic with many potential applications. In this paper, we propose a novel Task-Recursive Learning (TRL) framework to jointly and recurrently conduct three representative tasks therein containing depth estimation, surface normal prediction and semantic segmentation. TRL recursively refines the prediction results through a series of task-level interactions, where one-time cross-task interaction is abstracted as one network block of one time stage. In each stage, we serialize multiple tasks into a sequence and then recursively perform their interactions. To adaptively enhance counterpart patterns, we encapsulate interactions into a specific Task-Attentional Module (TAM) to mutually-boost the tasks from each other. Across stages, the historical experiences of previous states of tasks are selectively propagated into the next stages by using Feature-Selection unit (FS-Unit), which takes advantage of complementary information across tasks. The sequence of task-level interactions is also evolved along a coarse-to-fine scale space such that the required details may be refined progressively. Finally the task-abstracted sequence problem of multi-task prediction is framed into a recursive network. Extensive experiments on NYU-Depth v2 and SUN RGB-D datasets demonstrate that our method can recursively refines the results of the triple tasks and achieves state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Cui, Zhen  |e verfasserin  |4 aut 
700 1 |a Xu, Chunyan  |e verfasserin  |4 aut 
700 1 |a Jie, Zequn  |e verfasserin  |4 aut 
700 1 |a Li, Xiang  |e verfasserin  |4 aut 
700 1 |a Yang, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 10 vom: 02. Okt., Seite 2608-2623  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:10  |g day:02  |g month:10  |g pages:2608-2623 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2926728  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 10  |b 02  |c 10  |h 2608-2623