Computational Assessment of MLCT versus MC Stabilities in First-to-Third-Row d6 Pseudo-Octahedral Transition Metal Complexes

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 27 vom: 15. Okt., Seite 2377-2390
1. Verfasser: Batlogg, Aymerick (VerfasserIn)
Weitere Verfasser: Fumanal, Maria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article density functional theory excited state energies transition metal complexes wave-function theory
Beschreibung
Zusammenfassung:© 2019 Wiley Periodicals, Inc.
An accurate modeling of metal-to-ligand-charge-transfer (MLCT) and metal-centered (MC) excited state energies is key to predict the photoinduced response in transition metal complexes (TMCs). Herein, the importance of the ground state and excited state reference geometries is addressed for three-prototype d6 pseudo-octahedral TMCs, each displaying a different potential energy landscape of MLCT versus MC relative stabilities. Several functionals are used within the time-dependent density functional theory (TDDFT), as well as multireference wave-function theory (MS-CASPT2), applied to [Mn(im)(CO)3 (phen)]+ , [Ru(im)2 (bpy)2 ]2+ , and [Re(im)(CO)3 (phen)]+ , (im: imidazole, bpy: bypiridine, phen: phenantroline). The results revel that TDDFT is robust except when using B3LYP functional for first-row d6 TMCs. In contrast, MS-CASPT2 calculations are strongly biased in those cases with competitive MLCT/MC states. The results reinforce the reliability of B3LYP to describe the excited states in d6 TMCs, but question the validity of assessing the density functional theory (DFT)/TDDFT performance via direct comparison with MS-CASPT2 performed at the same DFT reference geometry as a standard strategy. © 2019 Wiley Periodicals, Inc
Beschreibung:Date Revised 08.01.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.26014