Auxin biosynthesis : spatial regulation and adaptation to stress
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 70(2019), 19 vom: 15. Okt., Seite 5041-5049 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Review Auxin biosynthesis TAA TAR YUC drought endoplasmic reticulum halotropism heat stress mehr... |
Zusammenfassung: | © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. The plant hormone auxin is essential for plant growth and development, controlling both organ development and overall plant architecture. Auxin homeostasis is regulated by coordination of biosynthesis, transport, conjugation, sequestration/storage, and catabolism to optimize concentration-dependent growth responses and adaptive responses to temperature, water stress, herbivory, and pathogens. At present, the best defined pathway of auxin biosynthesis is the TAA/YUC route, in which the tryptophan aminotransferases TAA and TAR and YUCCA flavin-dependent monooxygenases produce the auxin indole-3-acetic acid from tryptophan. This review highlights recent advances in our knowledge of TAA/YUC-dependent auxin biosynthesis focusing on membrane localization of auxin biosynthetic enzymes, differential regulation in root and shoot tissue, and auxin biosynthesis during abiotic stress |
---|---|
Beschreibung: | Date Completed 10.08.2020 Date Revised 10.08.2020 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erz283 |