Learning Deep Features for One-Class Classification
We present a novel deep-learning-based approach for one-class transfer learning in which labeled data from an unrelated task is used for feature learning in one-class classification. The proposed method operates on top of a convolutional neural network (CNN) of choice and produces descriptive featur...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 24. Nov., Seite 5450-5463 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We present a novel deep-learning-based approach for one-class transfer learning in which labeled data from an unrelated task is used for feature learning in one-class classification. The proposed method operates on top of a convolutional neural network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss, are proposed along with a parallel CNN architecture. A template matching-based framework is introduced to facilitate the testing process. Extensive experiments on publicly available anomaly detection, novelty detection, and mobile active authentication datasets show that the proposed deep one-class (DOC) classification method achieves significant improvements over the state-of-the-art |
---|---|
Beschreibung: | Date Revised 27.08.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2019.2917862 |