Learning Deep Features for One-Class Classification

We present a novel deep-learning-based approach for one-class transfer learning in which labeled data from an unrelated task is used for feature learning in one-class classification. The proposed method operates on top of a convolutional neural network (CNN) of choice and produces descriptive featur...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 24. Nov., Seite 5450-5463
Auteur principal: Perera, Pramuditha (Auteur)
Autres auteurs: Patel, Vishal M
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
Description
Résumé:We present a novel deep-learning-based approach for one-class transfer learning in which labeled data from an unrelated task is used for feature learning in one-class classification. The proposed method operates on top of a convolutional neural network (CNN) of choice and produces descriptive features while maintaining a low intra-class variance in the feature space for the given class. For this purpose two loss functions, compactness loss and descriptiveness loss, are proposed along with a parallel CNN architecture. A template matching-based framework is introduced to facilitate the testing process. Extensive experiments on publicly available anomaly detection, novelty detection, and mobile active authentication datasets show that the proposed deep one-class (DOC) classification method achieves significant improvements over the state-of-the-art
Description:Date Revised 27.08.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2019.2917862