|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM29748835X |
003 |
DE-627 |
005 |
20231225092111.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.jcp.2019.04.015
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0991.xml
|
035 |
|
|
|a (DE-627)NLM29748835X
|
035 |
|
|
|a (NLM)31130740
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Holiday, Alexander
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Manifold learning for parameter reduction
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 11.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimensionality and complexity makes symbolic, pen-and-paper model reduction tedious and impractical, a difficulty addressed by recently developed frameworks that computerize reduction. Symbolic work has the benefit, however, of identifying both reduced state variables and parameter combinations that matter most (effective parameters, "inputs"); whereas current computational reduction schemes leave the parameter reduction aspect mostly unaddressed. As the interest in mapping out and optimizing complex input-output relations keeps growing, it becomes clear that combating the curse of dimensionality also requires efficient schemes for input space exploration and reduction. Here, we explore systematic, data-driven parameter reduction by means of effective parameter identification, starting from current nonlinear manifoldlearning techniques enabling state space reduction. Our approach aspires to extend the data-driven determination of effective state variables with the data-driven discovery of effective model parameters, and thus to accelerate the exploration of high-dimensional parameter spaces associated with complex models
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a data driven perturbation theory
|
650 |
|
4 |
|a data mining
|
650 |
|
4 |
|a diffusion maps
|
650 |
|
4 |
|a model reduction
|
650 |
|
4 |
|a parameter sloppiness
|
700 |
1 |
|
|a Kooshkbaghi, Mahdi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bello-Rivas, Juan M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gear, C William
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zagaris, Antonios
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kevrekidis, Ioannis G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational physics
|d 1986
|g 392(2019) vom: 01. Sept., Seite 419-431
|w (DE-627)NLM098188844
|x 0021-9991
|7 nnns
|
773 |
1 |
8 |
|g volume:392
|g year:2019
|g day:01
|g month:09
|g pages:419-431
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.jcp.2019.04.015
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 392
|j 2019
|b 01
|c 09
|h 419-431
|