Manifold learning for parameter reduction

Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimension...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 392(2019) vom: 01. Sept., Seite 419-431
1. Verfasser: Holiday, Alexander (VerfasserIn)
Weitere Verfasser: Kooshkbaghi, Mahdi, Bello-Rivas, Juan M, Gear, C William, Zagaris, Antonios, Kevrekidis, Ioannis G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article data driven perturbation theory data mining diffusion maps model reduction parameter sloppiness
LEADER 01000naa a22002652 4500
001 NLM29748835X
003 DE-627
005 20231225092111.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2019.04.015  |2 doi 
028 5 2 |a pubmed24n0991.xml 
035 |a (DE-627)NLM29748835X 
035 |a (NLM)31130740 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Holiday, Alexander  |e verfasserin  |4 aut 
245 1 0 |a Manifold learning for parameter reduction 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimensionality and complexity makes symbolic, pen-and-paper model reduction tedious and impractical, a difficulty addressed by recently developed frameworks that computerize reduction. Symbolic work has the benefit, however, of identifying both reduced state variables and parameter combinations that matter most (effective parameters, "inputs"); whereas current computational reduction schemes leave the parameter reduction aspect mostly unaddressed. As the interest in mapping out and optimizing complex input-output relations keeps growing, it becomes clear that combating the curse of dimensionality also requires efficient schemes for input space exploration and reduction. Here, we explore systematic, data-driven parameter reduction by means of effective parameter identification, starting from current nonlinear manifoldlearning techniques enabling state space reduction. Our approach aspires to extend the data-driven determination of effective state variables with the data-driven discovery of effective model parameters, and thus to accelerate the exploration of high-dimensional parameter spaces associated with complex models 
650 4 |a Journal Article 
650 4 |a data driven perturbation theory 
650 4 |a data mining 
650 4 |a diffusion maps 
650 4 |a model reduction 
650 4 |a parameter sloppiness 
700 1 |a Kooshkbaghi, Mahdi  |e verfasserin  |4 aut 
700 1 |a Bello-Rivas, Juan M  |e verfasserin  |4 aut 
700 1 |a Gear, C William  |e verfasserin  |4 aut 
700 1 |a Zagaris, Antonios  |e verfasserin  |4 aut 
700 1 |a Kevrekidis, Ioannis G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 392(2019) vom: 01. Sept., Seite 419-431  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:392  |g year:2019  |g day:01  |g month:09  |g pages:419-431 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2019.04.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 392  |j 2019  |b 01  |c 09  |h 419-431