Manifold learning for parameter reduction

Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimension...

Description complète

Détails bibliographiques
Publié dans:Journal of computational physics. - 1986. - 392(2019) vom: 01. Sept., Seite 419-431
Auteur principal: Holiday, Alexander (Auteur)
Autres auteurs: Kooshkbaghi, Mahdi, Bello-Rivas, Juan M, Gear, C William, Zagaris, Antonios, Kevrekidis, Ioannis G
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Journal of computational physics
Sujets:Journal Article data driven perturbation theory data mining diffusion maps model reduction parameter sloppiness