Manifold learning for parameter reduction

Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimension...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 392(2019) vom: 01. Sept., Seite 419-431
1. Verfasser: Holiday, Alexander (VerfasserIn)
Weitere Verfasser: Kooshkbaghi, Mahdi, Bello-Rivas, Juan M, Gear, C William, Zagaris, Antonios, Kevrekidis, Ioannis G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article data driven perturbation theory data mining diffusion maps model reduction parameter sloppiness