Manifold learning for parameter reduction
Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimension...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | Journal of computational physics. - 1986. - 392(2019) vom: 01. Sept., Seite 419-431
|
1. Verfasser: |
Holiday, Alexander
(VerfasserIn) |
Weitere Verfasser: |
Kooshkbaghi, Mahdi,
Bello-Rivas, Juan M,
Gear, C William,
Zagaris, Antonios,
Kevrekidis, Ioannis G |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of computational physics
|
Schlagworte: | Journal Article
data driven perturbation theory
data mining
diffusion maps
model reduction
parameter sloppiness |