Manifold learning for parameter reduction
Large scale dynamical systems (e.g. many nonlinear coupled differential equations) can often be summarized in terms of only a few state variables (a few equations), a trait that reduces complexity and facilitates exploration of behavioral aspects of otherwise intractable models. High model dimension...
Description complète
Détails bibliographiques
Publié dans: | Journal of computational physics. - 1986. - 392(2019) vom: 01. Sept., Seite 419-431
|
Auteur principal: |
Holiday, Alexander
(Auteur) |
Autres auteurs: |
Kooshkbaghi, Mahdi,
Bello-Rivas, Juan M,
Gear, C William,
Zagaris, Antonios,
Kevrekidis, Ioannis G |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Journal of computational physics
|
Sujets: | Journal Article
data driven perturbation theory
data mining
diffusion maps
model reduction
parameter sloppiness |