Engineering Protein-Clay Nanosheets Composite Hydrogels with Designed Arginine-Rich Proteins

Clay nanosheets (CNSs) have been widely used in the design of nanocomposite biomaterials. CNSs display a disk-like morphology with strong negatively charged surfaces. It has been shown that guanidinium-containing molecules can bind CNSs through noncovalent salt-bridge interactions and thus serve as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 22 vom: 04. Juni, Seite 7255-7260
1. Verfasser: Lv, Shanshan (VerfasserIn)
Weitere Verfasser: Duan, Tianyu, Li, Hongbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Hydrogels Polymers Proteins Arginine 94ZLA3W45F Clay T1FAD4SS2M
Beschreibung
Zusammenfassung:Clay nanosheets (CNSs) have been widely used in the design of nanocomposite biomaterials. CNSs display a disk-like morphology with strong negatively charged surfaces. It has been shown that guanidinium-containing molecules can bind CNSs through noncovalent salt-bridge interactions and thus serve as "molecular glues" for CNSs. Making use of the guanidinium side chain in arginine, here, we designed novel arginine-rich elastomeric proteins to engineer protein-CNS nanocomposite hydrogels. Our results showed that these arginine-rich proteins can interact with CNSs effectively and can cross-link CNSs into hydrogels. Rheological measurements showed that mechanical properties of the resultant hydrogels depended on the arginine content in the arginine-rich proteins as well as CNS/protein concentration. Compared with hydrogels constructed from CNSs or proteins alone, the novel protein-CNS nanocomposite hydrogels show much improved mechanical properties. Our work opens up a new avenue to engineer functional protein hydrogels for various applications
Beschreibung:Date Completed 17.08.2020
Date Revised 17.08.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00701