Expression profiling of CTR1-like and EIN2-like genes in buds and leaves of Populus tremula, and in vitro study of the interaction between their polypeptides
Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 139(2019) vom: 15. Juni, Seite 660-671 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article 1-Aminocyclopropane-1-Carboxylate oxidase Constitutive triple response 1 Ethylene Ethylene insensitive 2 Poplar Arabidopsis Proteins EIN2 protein, Arabidopsis Ethylenes Receptors, Cell Surface mehr... |
Zusammenfassung: | Copyright © 2019 Elsevier Masson SAS. All rights reserved. In Arabidopsis, the serine/threonine protein kinase Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 2 polypeptide (EIN2) functions are key negative and positive components, respectively, in the ethylene signalling route. Here, we report on an in silico study of members of the CTR1-like and EIN2-like polypeptide families from poplars. The expression of CTR1-like and EIN2-like genes such as Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a was studied in Populus tremula buds and leaves in response to dehydration, various light conditions and under senescence. In buds under dehydration, the maximal fold-change of the Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a expression level recorded almost identical values. This suggests that maintenance of a constant ratio between the transcript levels of genes encoding positive and negative ethylene signalling components is required under stress. The expression of the studied genes was 1.4-to 3-fold higher in response to darkness, but 4.5- to 51.2-fold and 21.6- to 51.2-fold higher under the early and moderate leaf senescence, respectively. It is worth noting that the senescence-related Ptre-EIN2a and Ptre-CTR3a expression profiles were very similar. Using in vitro assays, we demonstrated the ability of the catalytic domain of Ptre-CTR1 to phosphorylate the Ptre-EIN2a-like polypeptide, which is similar to that in Arabidopsis. The target substrate, the Ptre-CEND2a polypeptide (C-terminal part of Ptre-EIN2a), was only phosphorylated by the protein kinase Ptre-CTR1 and not by Ptre-CTR3. Moreover, the addition of Ptre-CTR3 polypeptides (-CTR3a or -CTR3b forms) to the reaction mixture had an inhibitory effect on Ptre-CTR1 auto- and trans-phosphorylation. In contrast to Ptre-CTR1, Ptre-CTR3 may act as a positive regulator in ethylene signalling in poplar; however, this hypothesis requires in vivo confirmation. Thus, the ethylene signalling route in poplar seems to be under the control of certain additional mechanisms which have not been reported in Arabidopsis |
---|---|
Beschreibung: | Date Completed 17.06.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2019.04.029 |