|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM296404608 |
003 |
DE-627 |
005 |
20231225085749.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erz191
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0987.xml
|
035 |
|
|
|a (DE-627)NLM296404608
|
035 |
|
|
|a (NLM)31020325
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Alvarez Prado, Santiago
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a To clean or not to clean phenotypic datasets for outlier plants in genetic analyses?
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.07.2020
|
500 |
|
|
|a Date Revised 20.07.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
|
520 |
|
|
|a Based on case studies, we discuss the extent to which genome-wide association studies (GWAS) are affected by outlier plants, i.e. those deviating from the expected distribution on a multi-criteria basis. Using a raw dataset consisting of daily measurements of leaf area, biomass, and plant height for thousands of plants, we tested three different cleaning methods for their effects on genetic analyses. No-cleaning resulted in the highest number of dubious quantitative trait loci, especially at loci with highly unbalanced allelic frequencies. A trade-off was identified between the risk of false-positives (with no-cleaning and/or a low threshold for minor allele frequency) and the risk of missing interesting rare alleles. Cleaning can lower the risk of the latter by making it possible to choose a higher threshold in GWAS
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Allele frequency
|
650 |
|
4 |
|a genetic analysis
|
650 |
|
4 |
|a outliers
|
650 |
|
4 |
|a phenomics
|
650 |
|
4 |
|a quantitative trait loci
|
650 |
|
4 |
|a statistical analysis
|
650 |
|
7 |
|a Plant Proteins
|2 NLM
|
700 |
1 |
|
|a Sanchez, Isabelle
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cabrera-Bosquet, Llorenç
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Grau, Antonin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Welcker, Claude
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tardieu, François
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hilgert, Nadine
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 70(2019), 15 vom: 07. Aug., Seite 3693-3698
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:70
|g year:2019
|g number:15
|g day:07
|g month:08
|g pages:3693-3698
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erz191
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 70
|j 2019
|e 15
|b 07
|c 08
|h 3693-3698
|