Chemical composition and in vitro digestibility of corn stover during field exposure and their fermentation characteristics of silage prepared with microbial additives

OBJECTIVE: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase

Bibliographische Detailangaben
Veröffentlicht in:Asian-Australasian journal of animal sciences. - 1998. - 32(2019), 12 vom: 01. Dez., Seite 1854-1863
1. Verfasser: Gao, Jun Lei (VerfasserIn)
Weitere Verfasser: Wang, Peng, Zhou, Chang Hai, Li, Ping, Tang, Hong Yu, Zhang, Jia Bao, Cai, Yimin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Asian-Australasian journal of animal sciences
Schlagworte:Journal Article Cellulase Corn stover In vitro digestibility Lactic Acid Bacteria Silage Fermentation
Beschreibung
Zusammenfassung:OBJECTIVE: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase
METHODS: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1-2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was 550.1±20.0 g/L of fresh matter, and the silos were kept at room temperature (10-25°C). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses
RESULTS: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage
CONCLUSION: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD
Beschreibung:Date Revised 18.11.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1011-2367
DOI:10.5713/ajas.18.0886