Scaling molecular dynamics beyond 100,000 processor cores for large-scale biophysical simulations

Published 2019. This article is a U.S. Government work and is in the public domain in the USA.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 21 vom: 05. Aug., Seite 1919-1930
1. Verfasser: Jung, Jaewoon (VerfasserIn)
Weitere Verfasser: Nishima, Wataru, Daniels, Marcus, Bascom, Gavin, Kobayashi, Chigusa, Adedoyin, Adetokunbo, Wall, Michael, Lappala, Anna, Phillips, Dominic, Fischer, William, Tung, Chang-Shung, Schlick, Tamar, Sugita, Yuji, Sanbonmatsu, Karissa Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 3D modeling GENESIS MD software biomolecular simulation high performance computing Chromatin
LEADER 01000caa a22002652 4500
001 NLM296155489
003 DE-627
005 20240728231839.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25840  |2 doi 
028 5 2 |a pubmed24n1484.xml 
035 |a (DE-627)NLM296155489 
035 |a (NLM)30994934 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jung, Jaewoon  |e verfasserin  |4 aut 
245 1 0 |a Scaling molecular dynamics beyond 100,000 processor cores for large-scale biophysical simulations 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.08.2020 
500 |a Date Revised 28.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Published 2019. This article is a U.S. Government work and is in the public domain in the USA. 
520 |a The growing interest in the complexity of biological interactions is continuously driving the need to increase system size in biophysical simulations, requiring not only powerful and advanced hardware but adaptable software that can accommodate a large number of atoms interacting through complex forcefields. To address this, we developed and implemented strategies in the GENESIS molecular dynamics package designed for large numbers of processors. Long-range electrostatic interactions were parallelized by minimizing the number of processes involved in communication. A novel algorithm was implemented for nonbonded interactions to increase single instruction multiple data (SIMD) performance, reducing memory usage for ultra large systems. Memory usage for neighbor searches in real-space nonbonded interactions was reduced by approximately 80%, leading to significant speedup. Using experimental data describing physical 3D chromatin interactions, we constructed the first atomistic model of an entire gene locus (GATA4). Taken together, these developments enabled the first billion-atom simulation of an intact biomolecular complex, achieving scaling to 65,000 processes (130,000 processor cores) with 1 ns/day performance. Published 2019. This article is a U.S. Government work and is in the public domain in the USA 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a 3D modeling 
650 4 |a GENESIS MD software 
650 4 |a biomolecular simulation 
650 4 |a high performance computing 
650 7 |a Chromatin  |2 NLM 
700 1 |a Nishima, Wataru  |e verfasserin  |4 aut 
700 1 |a Daniels, Marcus  |e verfasserin  |4 aut 
700 1 |a Bascom, Gavin  |e verfasserin  |4 aut 
700 1 |a Kobayashi, Chigusa  |e verfasserin  |4 aut 
700 1 |a Adedoyin, Adetokunbo  |e verfasserin  |4 aut 
700 1 |a Wall, Michael  |e verfasserin  |4 aut 
700 1 |a Lappala, Anna  |e verfasserin  |4 aut 
700 1 |a Phillips, Dominic  |e verfasserin  |4 aut 
700 1 |a Fischer, William  |e verfasserin  |4 aut 
700 1 |a Tung, Chang-Shung  |e verfasserin  |4 aut 
700 1 |a Schlick, Tamar  |e verfasserin  |4 aut 
700 1 |a Sugita, Yuji  |e verfasserin  |4 aut 
700 1 |a Sanbonmatsu, Karissa Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 21 vom: 05. Aug., Seite 1919-1930  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:21  |g day:05  |g month:08  |g pages:1919-1930 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25840  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 21  |b 05  |c 08  |h 1919-1930