Globally Optimal Inlier Set Maximization for Atlanta World Understanding

In this work, we describe man-made structures via an appropriate structure assumption, called the Atlanta world assumption, which contains a vertical direction (typically the gravity direction) and a set of horizontal directions orthogonal to the vertical direction. Contrary to the commonly used Man...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 10 vom: 23. Okt., Seite 2656-2669
1. Verfasser: Joo, Kyungdon (VerfasserIn)
Weitere Verfasser: Oh, Tae-Hyun, Kweon, In So, Bazin, Jean-Charles
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM295910291
003 DE-627
005 20231225084705.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2909863  |2 doi 
028 5 2 |a pubmed24n0986.xml 
035 |a (DE-627)NLM295910291 
035 |a (NLM)30969915 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Joo, Kyungdon  |e verfasserin  |4 aut 
245 1 0 |a Globally Optimal Inlier Set Maximization for Atlanta World Understanding 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this work, we describe man-made structures via an appropriate structure assumption, called the Atlanta world assumption, which contains a vertical direction (typically the gravity direction) and a set of horizontal directions orthogonal to the vertical direction. Contrary to the commonly used Manhattan world assumption, the horizontal directions in Atlanta world are not necessarily orthogonal to each other. While Atlanta world can encompass a wider range of scenes, this makes the search space much larger and the problem more challenging. Our input data is a set of surface normals, for example, acquired from RGB-D cameras or 3D laser scanners, as well as lines from calibrated images. Given this input data, we propose the first globally optimal method of inlier set maximization for Atlanta direction estimation. We define a novel search space for Atlanta world, as well as its parametrization, and solve this challenging problem using a branch-and-bound (BnB) framework. To alleviate the computational bottleneck in BnB, i.e., the bound computation, we present two bound computation strategies: rectangular bound and slice bound in an efficient measurement domain, i.e., the extended Gaussian image (EGI). In addition, we propose an efficient two-stage method which automatically estimates the number of horizontal directions of a scene. Experimental results with synthetic and real-world datasets have successfully confirmed the validity of our approach 
650 4 |a Journal Article 
700 1 |a Oh, Tae-Hyun  |e verfasserin  |4 aut 
700 1 |a Kweon, In So  |e verfasserin  |4 aut 
700 1 |a Bazin, Jean-Charles  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 10 vom: 23. Okt., Seite 2656-2669  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:10  |g day:23  |g month:10  |g pages:2656-2669 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2909863  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 10  |b 23  |c 10  |h 2656-2669