View-Invariant Human Action Recognition Based on a 3D Bio-Constrained Skeleton Model

Skeleton-based human action recognition has been a hot topic in recent years. Most existing studies are based on the skeleton data obtained from Kinect, which is noisy and unstable, in particular, in the case of occlusions. To cope with the noisy skeleton data and variation of viewpoints, this paper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 8 vom: 22. Aug., Seite 3959-3972
1. Verfasser: Nie, Qiang (VerfasserIn)
Weitere Verfasser: Wang, Jiangliu, Wang, Xin, Liu, Yunhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM295306971
003 DE-627
005 20231225083357.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2907048  |2 doi 
028 5 2 |a pubmed24n0984.xml 
035 |a (DE-627)NLM295306971 
035 |a (NLM)30908224 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nie, Qiang  |e verfasserin  |4 aut 
245 1 0 |a View-Invariant Human Action Recognition Based on a 3D Bio-Constrained Skeleton Model 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 02.01.2020 
500 |a Date Revised 02.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Skeleton-based human action recognition has been a hot topic in recent years. Most existing studies are based on the skeleton data obtained from Kinect, which is noisy and unstable, in particular, in the case of occlusions. To cope with the noisy skeleton data and variation of viewpoints, this paper presents a view-invariant method for human action recognition by recovering the corrupted skeletons based on a 3D bio-constrained skeleton model and visualizing those body-level motion features obtained during the recovery process with images. The bio-constrained skeleton model is defined with two types of constraints: 1) constant bone lengths and 2) motion limits of joints. Based on the bio-constrained model, an effective method is proposed for skeleton recovery. Two types of new motion features, the Euclidean distance matrix between joints (JEDM), which contains the global structure information of the body, and the local dynamic variation of the joint Euler angles (JEAs) are used in describing human action. These two types of features are encoded into different motion images, which are fed into a two-stream convolutional neural network for learning different action patterns. The experiments on three benchmark datasets achieve better accuracy than the state-of-the-art approaches, which demonstrates the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Wang, Jiangliu  |e verfasserin  |4 aut 
700 1 |a Wang, Xin  |e verfasserin  |4 aut 
700 1 |a Liu, Yunhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 8 vom: 22. Aug., Seite 3959-3972  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:8  |g day:22  |g month:08  |g pages:3959-3972 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2907048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 8  |b 22  |c 08  |h 3959-3972