Identifying the Activation of Bimetallic Sites in NiCo2 S4 g-C3 N4 -CNT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 18 vom: 23. Mai, Seite e1808281 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article bimetallic sites hybrid electrocatalysts metal-air batteries oxygen reduction/evolution transition-metal compounds |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Hybrid materials composed of transition-metal compounds and nitrogen-doped carbonaceous supports are promising electrocatalysts for various electrochemical energy conversion devices, whose activity enhancements can be attributed to the synergistic effect between metallic sites and N dopants. While the functionality of single-metal catalysts is relatively well-understood, the mechanism and synergy of bimetallic systems are less explored. Herein, the design and fabrication of an integrated flexible electrode based on NiCo2 S4 /graphitic carbon nitride/carbon nanotube (NiCo2 S4 g-C3 N4 -CNT) are reported. Comparative studies evidence the electronic transfer from bimetallic Ni/Co active sites to abundant pyridinic-N in underlying g-C3 N4 and the synergistic effect with coupled conductive CNTs for promoting reversible oxygen electrocatalysis. Theoretical calculations demonstrate the unique coactivation of bimetallic Ni/Co atoms by pyridinic-N species (a Ni, Co-N2 moiety), which simultaneously downshifts their d-band center positions and benefits the adsorption/desorption features of oxygen intermediates, accelerating the reaction kinetics. The optimized NiCo2 S4 @g-C3 N4 -CNT hybrid manifests outstanding bifunctional performance for catalyzing oxygen reduction/evolution reactions, highly efficient for realistic zinc-air batteries featuring low overpotential, high efficiency, and long durability, superior to those of physical mixed counterparts and state-of-the-art noble metal catalysts. The identified bimetallic coactivation mechanism will shed light on the rational design and interfacial engineering of hybrid nanomaterials for diverse applications |
---|---|
Beschreibung: | Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201808281 |