Temporal and Spatial Analysis of Grapevine Leafroll-Associated Virus 3 in Pinot Noir Grapevines in Australia
An epidemic of grapevine leafroll disease (GLD), caused by grapevine leafroll-associated virus 3 (GLRaV-3), was monitored over an 11-year period in Nuriootpa, South Australia. Inoculum originated from infected budwood, and initial GLD incidence at the time of transplanting in 1986 was 23.1%. Infecte...
Veröffentlicht in: | Plant disease. - 1997. - 81(1997), 6 vom: 30. Juni, Seite 625-628 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
1997
|
Zugriff auf das übergeordnete Werk: | Plant disease |
Schlagworte: | Journal Article |
Zusammenfassung: | An epidemic of grapevine leafroll disease (GLD), caused by grapevine leafroll-associated virus 3 (GLRaV-3), was monitored over an 11-year period in Nuriootpa, South Australia. Inoculum originated from infected budwood, and initial GLD incidence at the time of transplanting in 1986 was 23.1%. Infected vines were planted in a random spatial pattern. Change in disease incidence was not observed until 8 years after planting, when disease incidence increased to 27.9%. Disease incidence increased to 51.9% by 1996. Disease progress and rate curves (dy/dt versus time) indicated that the logistic (R2 = 96.2) and Gompertz (R2 = 96.3) growth models would best describe disease progress. However, the logistic model, which has a simpler data transformation with fewer model assumptions, was chosen for the purpose of comparing this epidemic (South Australia) with a GLRaV-3 epidemic in Cabernet Sauvignon grapevines in New Zealand. The logistic rate of GLD spread with respect to time was 0.35 logit/year in South Australia and was nearly three times faster (1.19 logits/year) for GLRaV-3 spread in New Zealand. Ordinary runs analyses indicated that the arrangement of infected vines within rows in South Australia was random up to 8 years after transplanting but subsequently became highly aggregated. Thus, GLD-infected plants are contributing to new infections (i.e., there is evidence for plant-to-plant spread), and a biotic vector with a steep dispersal gradient from each point source is likely to be involved |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 0191-2917 |
DOI: | 10.1094/PDIS.1997.81.6.625 |