|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM293991111 |
003 |
DE-627 |
005 |
20231225080524.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201807083
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0979.xml
|
035 |
|
|
|a (DE-627)NLM293991111
|
035 |
|
|
|a (NLM)30773719
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Piccinotti, Davide
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.04.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a A variety of alternative plasmonic and dielectric material platforms-among them nitrides, semiconductors, and conductive oxides-have come to prominence in recent years as means to address the shortcomings of noble metals (including Joule losses, cost, and passive character) in certain nanophotonic and optical-frequency metamaterial applications. Here, it is shown that chalcogenide semiconductor alloys offer a uniquely broad pallet of optical properties, complementary to those of existing material platforms, which can be controlled by stoichiometric design. Using combinatorial high-throughput techniques, the extraordinary epsilon-near-zero, plasmonic, and low/high-index characteristics of Bi:Sb:Te alloys are explored. Depending upon composition they can, for example, have plasmonic figures of merit higher than conductive oxides and nitrides across the entire UV-NIR range, and higher than gold below 550 nm; present dielectric figures of merit better than conductive oxides at near-infrared telecommunications wavelengths; and exhibit record-breaking refractive indices as low as 0.7 and as high as 11.5
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a chalcogenides
|
650 |
|
4 |
|a high throughput
|
650 |
|
4 |
|a metamaterials
|
650 |
|
4 |
|a nanophotonics
|
650 |
|
4 |
|a plasmonics
|
700 |
1 |
|
|a Gholipour, Behrad
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a MacDonald, Kevin F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hayden, Brian E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheludev, Nikolay I
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 14 vom: 12. Apr., Seite e1807083
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:14
|g day:12
|g month:04
|g pages:e1807083
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201807083
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 14
|b 12
|c 04
|h e1807083
|