Stoichiometric Engineering of Chalcogenide Semiconductor Alloys for Nanophotonic Applications
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 14 vom: 12. Apr., Seite e1807083 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article chalcogenides high throughput metamaterials nanophotonics plasmonics |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. A variety of alternative plasmonic and dielectric material platforms-among them nitrides, semiconductors, and conductive oxides-have come to prominence in recent years as means to address the shortcomings of noble metals (including Joule losses, cost, and passive character) in certain nanophotonic and optical-frequency metamaterial applications. Here, it is shown that chalcogenide semiconductor alloys offer a uniquely broad pallet of optical properties, complementary to those of existing material platforms, which can be controlled by stoichiometric design. Using combinatorial high-throughput techniques, the extraordinary epsilon-near-zero, plasmonic, and low/high-index characteristics of Bi:Sb:Te alloys are explored. Depending upon composition they can, for example, have plasmonic figures of merit higher than conductive oxides and nitrides across the entire UV-NIR range, and higher than gold below 550 nm; present dielectric figures of merit better than conductive oxides at near-infrared telecommunications wavelengths; and exhibit record-breaking refractive indices as low as 0.7 and as high as 11.5 |
---|---|
Beschreibung: | Date Completed 05.04.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201807083 |